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SUMMARY OF ACCOMPLISHMENTS

RF Polymers offers a whole new design space to radio frequency (RF) engineers. More
properly known as magneto-dielectric polymer nanocomposites, these materials have
non-trivial permeability as well as permittivity. Hence, the transverse electromagnetic
mode (TEM) wave impedance is near, or even above, unity. Such material properties
offer designers the ability to miniaturize certain common passive RF components, such as
antennas, radomes, and transmission lines among others. Additionally, since a polymer
matrix is used as the base for the material, flexibility or rigidity can be realized as needed.
Low-cost, high volume production methods such as injection molding are possible.

Traditional RF polymers used rather large inclusions (on the order of 40 microns in
diameter or so). Since the density of magnetic materials, either metals or oxides, is
substantially larger than the base polymer, the inclusions have a tendency to sink in the
uncured material unless some special techniques are used for dispersal. Nanometer-sized
inclusions can be dispersed rather well throughout the matrix either through treatment
with a surfactant or by locking the particles in the interstitial locations of the polymer
matrix. Hence, polymer nanocomposites offer the potential for well-dispersed (e.g.
homogeneous) material properties. MSU investigated several aspects of RF polymers
exclusive of their chemical properties and synthesis methods. A brief discussion of
accomplishments follows with citations to published works.

Reduced Material Characterization Method

During this project, MSU collaborated with a number of researchers — both AFOSR and
DARPA sponsored — in the characterization of polymer composite materials. Samples
were evaluated using MSU’s stripline field applicator from 2-18 GHz. Research material
synthesis typically yields a small volume of material (on the order of 1 gram in many
cases). Traditional material characterization techniques, especially ones over a wide
range of frequencies as compared to cavity methods that are essentially single frequency
methods, require substantially more material. The most common example is waveguide
testing where the cross-section of a waveguide must be filled. For X-band (8-12 GHz)
this then necessitates approximately a 30x10x3mm sample. Hence, MSU developed a
method for characterizing materials when only a portion of the waveguide cross-section
is filled [1-3]. Experiments have shown that the reduction can be on the order of % in
volume. Further studies are planned using a new analysis method developed at MSU that
will allow optimization of these reduced-size samples.

Material Property Control

Another aspect of understanding RF polymer potential and applications lie in the ability
to tune material properties as needed. In traditional RF engineering, the designer makes
compromises, typically in performance, based on the available materials. For RF
polymers, the material designer has various choices that impact performance — polymer
matrix, inclusion(s), volume fractions, fabrication method, etc. The RF designer has an
additional design parameter, the construction of the RF polymer from one or more
polymer systems. Hence, material properties can be controlled by layering the material in
a two (or greater) phase manner. Alternative arrangements include a milk crate topology,
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rods, spheroids, cubes, and other three-dimensional meta-inclusions (e.g. inclusions of
synthetic RF polymer materials in another polymer). MSU investigated the use of
traditional approximate mixing formulae for nanocomposites and found, not
unsurprisingly, that they worked well if the volume fraction was low (a few percent) and
if the inclusions were spheroid. An example is illustrated in Figure 1.
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Figure 1. Comparison of the Maxwell-Garnet, Bruggeman, and Coherent Potential mixing formula
vs. experimental data for a volume fraction of 10%.

MSU then began an exact study of layered materials for two reasons: (1) it is a logical
step towards the ultimate goal of a three-dimensional (e.g. particle) nanocomposite and
(2) the electromagnetics can be solved exactly. Deep sub-wavelength thick alternating
material layers were used for this research was the reflection and transmission from each
layer was represented by a wave matrix. The cascade of such matrices then represents the
stack. Figure 2 illustrates an example where the volume fraction of the two materials is
equal.
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Figure 2. Effective permittivity of an alternating stack with constant total volume as a function of the
number of layers and permittivity ratio.

In this, it is seen that a few sub-wavelength layers can be used to tune the homogenized
permittivity of the material to a desired value consistent with the permittivity of each of
the constituent materials. This work was reported in [4-5].

Material Characterization

MSU characterized materials for a number of AFOSR-sponsored researchers from 1
MHz to 18 GHz. Principally, two test methods were used as screening tools: an Agilent
Material Analyzer provided to MSU by AFOSR (1-1000 MHz) and a stripline field
applicator (2-18 GHz). MSU also has a number of cavity and waveguide fixtures for
smaller bandwidth measurements with greater accuracy. The results of these experiments
are left to the material synthesis researchers to report; however, a number of
nanocomposite materials showed promise for niche applications.

RF Device Design using RF Polymers

The ultimate impact of RF polymer nanocomposite research is in passive (or active;
however, that is the subject of future research) devices. MSU investigated several
structures that are common building blocks for passive RF devices. These are: (1)
microstrip transmission line, (2) patch antenna, (3) co-planar waveguide, and (4) planar
slot antenna. Based on Hansen’s approximation for the bandwidth of a patch antenna [6],
MSU determined that a TEM impedance greater than free-space will yield a superior
bandwidth as shown in Figure 3.
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Figure 3. Patch antenna bandwidth for a relative permittivity of five vs. relative permeability.
Bandwidth is one of the key parameters that determine the utility of an antenna. Air Force
applications now routinely use wide bandwidth apertures. In the example above, the
bandwidth of the antenna nearly quadrupled compared to the non-magnetic case. Further
examples are given in [7]. Note that the material provided (heavily-loaded NiFe
composite in a urethane matrix that used large inclusions — ~45 microns) was definitely
not low loss and hence the realized bandwidth was due more to loss than permeability.

Design Software

One of the principal initial applications of magneto-dielectric RF nanocomposites is in
miniaturization of components. The rationale for using these materials for such a purpose
lies in the fact that at a given frequency, the wavelength in the material is smaller than
that in air or in a non-magnetic material with identical permittivity. Examples of RF
devices for which this is true is the patch antenna where the dimensions of the patch are
approximately one half wavelength in the substrate material. However, most devices
including the patch exist in a heterogeneous region, e.g. the patch lies in a substrate air
interface. Accurate simulation of the electromagnetic fields using most design tools
required on the order of forty samples per wavelength. As a result, the aperture from the
perspective of the air region is greatly over-sampled compared to the substrate region.
This leads to very long solution times that make simulation of complex apertures
impractical. MSU developed a hybrid prism-hexahedral design tool that reduces the
degrees-of-freedom for geometrically constrained problems compared to conventional
prism-only methods. The result is accurate simulations with less effort for apertures (or
open microstrip lines, co-planar waveguides, etc.) that utilize RF polymers. This work is
discussed in detail in [8-9].
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